Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Lab Chip ; 23(10): 2366-2370, 2023 05 16.
Article in English | MEDLINE | ID: covidwho-2315004

ABSTRACT

The Ellume COVID-19 home test from Ellume Health (Brisbane, Aus) became the first COVID-19 diagnostic tool authorized for home use by the United States FDA in December 2020. This early pandemic success was built on over ten years of work on the Ellume influenza home test. Ellume overcame critical technology challenges during the development of their influenza test. In addition, it faced a recall of its COVID-19 home test in 2021 due to false positive results. While Ellume initially persevered through the recall and restarted sales in the United States, the combination of the recall and the wide availability of competitors' low-cost over the counter tests in the United States led to Ellume entering voluntary administration in September 2022. This paper traces the history of Ellume and how 10 years of experience with a home influenza test allowed the company to quickly develop the Ellume COVID-19 home test. We will also provide to diagnostic developers the key strategies employed by Ellume to succeed while highlighting the pitfalls that have challenged the company's business success.


Subject(s)
COVID-19 , Influenza, Human , Humans , United States , COVID-19/diagnosis , Pandemics
2.
Sci Adv ; 9(14): eade4962, 2023 04 07.
Article in English | MEDLINE | ID: covidwho-2299520

ABSTRACT

Engineering plays a critical role in the development of medical devices, and this has been magnified since 2020 as severe acute respiratory syndrome coronavirus 2 swept over the globe. In response to the coronavirus disease 2019, the National Institutes of Health launched the Rapid Acceleration of Diagnostics (RADx) initiative to help meet the testing needs of the United States and effectively manage the pandemic. As the Engineering and Human Factors team for the RADx Tech Test Verification Core, we directly assessed more than 30 technologies that ultimately contributed to an increase of the country's total testing capacity by 1.7 billion tests to date. In this review, we present central lessons learned from this "apples-to-apples" comparison of novel, rapidly developed diagnostic devices. Overall, the evaluation framework and lessons learned presented in this review may serve as a blueprint for engineers developing point-of-care diagnostics, leaving us better prepared to respond to the next global public health crisis rapidly and effectively.


Subject(s)
COVID-19 , Humans , United States , COVID-19/diagnosis , COVID-19/epidemiology , Clinical Laboratory Techniques , SARS-CoV-2 , COVID-19 Testing , Point-of-Care Testing
3.
Front Med (Lausanne) ; 9: 1031083, 2022.
Article in English | MEDLINE | ID: covidwho-2282708

ABSTRACT

Objectives: Understanding the incidence and characteristics that influence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infections (VBIs) is imperative for developing public health policies to mitigate the coronavirus disease of 2019 (COVID-19) pandemic. We examined these factors and post-vaccination mitigation practices in individuals partially and fully vaccinated against SARS-CoV-2. Materials and methods: Adults >18 years old were voluntarily enrolled from a single metro-based SARS-CoV-2 testing network from January to July 2021. Participants were categorized as asymptomatic or symptomatic, and as unvaccinated, partially vaccinated, or fully vaccinated. All participants had confirmed SARS-CoV-2 infection based on standard of care (SOC) testing with nasopharyngeal swabs. Variant analysis by rRT-PCR was performed in a subset of time-matched vaccinated and unvaccinated individuals. A subgroup of partially and fully vaccinated individuals with a positive SARS-CoV-2 rRT-PCR was contacted to assess disease severity and post-vaccination mitigation practices. Results: Participants (n = 1,317) voluntarily underwent testing for SARS-CoV-2 during the enrollment period. A total of 29.5% of the population received at least one SARS-CoV-2 vaccine (n = 389), 12.8% partially vaccinated (n = 169); 16.1% fully vaccinated (n = 213). A total of 21.3% of partially vaccinated individuals tested positive (n = 36) and 9.4% of fully vaccinated individuals tested positive (n = 20) for SARS-CoV-2. Pfizer/BioNTech mRNA-1273 was the predominant vaccine received (1st dose = 66.8%, 2nd dose = 67.9%). Chronic liver disease and immunosuppression were more prevalent in the vaccinated (partially/fully) group compared to the unvaccinated group (p = 0.003, p = 0.021, respectively). There were more asymptomatic individuals in the vaccinated group compared to the unvaccinated group [n = 6 (10.7%), n = 16 (4.1%), p = 0.045]. CT values were lower for the unvaccinated group (median 24.3, IQR 19.1-30.5) compared to the vaccinated group (29.4, 22.0-33.7, p = 0.004). In the vaccinated group (n = 56), 18 participants were successfully contacted, 7 were lost to follow-up, and 2 were deceased. A total of 50% (n = 9) required hospitalization due to COVID-19 illness. Adherence to nationally endorsed mitigation strategies varied post-vaccination. Conclusion: The incidence of SARS-CoV-2 infection at this center was 21.3% in the partially vaccinated group and 9.4% in the fully vaccinated group. Chronic liver disease and immunosuppression were more prevalent in the vaccinated SARS-CoV-2 positive group, suggesting that these may be risk factors for VBIs. Partially and fully vaccinated individuals had a higher incidence of asymptomatic SARS-CoV-2 and higher CT values compared to unvaccinated SARS-CoV-2 positive individuals.

4.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2157122

ABSTRACT

Objectives Understanding the incidence and characteristics that influence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infections (VBIs) is imperative for developing public health policies to mitigate the coronavirus disease of 2019 (COVID-19) pandemic. We examined these factors and post-vaccination mitigation practices in individuals partially and fully vaccinated against SARS-CoV-2. Materials and methods Adults >18 years old were voluntarily enrolled from a single metro-based SARS-CoV-2 testing network from January to July 2021. Participants were categorized as asymptomatic or symptomatic, and as unvaccinated, partially vaccinated, or fully vaccinated. All participants had confirmed SARS-CoV-2 infection based on standard of care (SOC) testing with nasopharyngeal swabs. Variant analysis by rRT-PCR was performed in a subset of time-matched vaccinated and unvaccinated individuals. A subgroup of partially and fully vaccinated individuals with a positive SARS-CoV-2 rRT-PCR was contacted to assess disease severity and post-vaccination mitigation practices. Results Participants (n = 1,317) voluntarily underwent testing for SARS-CoV-2 during the enrollment period. A total of 29.5% of the population received at least one SARS-CoV-2 vaccine (n = 389), 12.8% partially vaccinated (n = 169);16.1% fully vaccinated (n = 213). A total of 21.3% of partially vaccinated individuals tested positive (n = 36) and 9.4% of fully vaccinated individuals tested positive (n = 20) for SARS-CoV-2. Pfizer/BioNTech mRNA-1273 was the predominant vaccine received (1st dose = 66.8%, 2nd dose = 67.9%). Chronic liver disease and immunosuppression were more prevalent in the vaccinated (partially/fully) group compared to the unvaccinated group (p = 0.003, p = 0.021, respectively). There were more asymptomatic individuals in the vaccinated group compared to the unvaccinated group [n = 6 (10.7%), n = 16 (4.1%), p = 0.045]. CT values were lower for the unvaccinated group (median 24.3, IQR 19.1–30.5) compared to the vaccinated group (29.4, 22.0–33.7, p = 0.004). In the vaccinated group (n = 56), 18 participants were successfully contacted, 7 were lost to follow-up, and 2 were deceased. A total of 50% (n = 9) required hospitalization due to COVID-19 illness. Adherence to nationally endorsed mitigation strategies varied post-vaccination. Conclusion The incidence of SARS-CoV-2 infection at this center was 21.3% in the partially vaccinated group and 9.4% in the fully vaccinated group. Chronic liver disease and immunosuppression were more prevalent in the vaccinated SARS-CoV-2 positive group, suggesting that these may be risk factors for VBIs. Partially and fully vaccinated individuals had a higher incidence of asymptomatic SARS-CoV-2 and higher CT values compared to unvaccinated SARS-CoV-2 positive individuals.

6.
Cell Rep Methods ; 2(5): 100222, 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1819464

ABSTRACT

During the COVID-19 pandemic, the development of point-of-care (POC) diagnostic testing accelerated in an unparalleled fashion. As a result, there has been an increased need for accurate, robust, and easy-to-use POC testing in a variety of non-traditional settings (i.e., pharmacies, drive-thru sites, schools). While stakeholders often express the desire for POC technologies that are "as simple as digital pregnancy tests," there is little discussion of what this means in regards to device design, development, and assessment. The design of POC technologies and systems should take into account the capabilities and limitations of the users and their environments. Such "human factors" are important tenets that can help technology developers create POC technologies that are effective for end-users in a multitude of settings. Here, we review the core principles of human factors and discuss lessons learned during the evaluation process of SARS-CoV-2 POC testing.

7.
Lab Chip ; 22(8): 1469-1473, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1805673

ABSTRACT

The COVID-19 pandemic has proven the need for point-of-care diagnosis of respiratory diseases and microfluidic technology has risen to the occasion. Mesa Biotech (San Diego, CA) originally developed the Accula platform for the diagnosis of influenza A and B and then extended the platform to SARS-CoV-2. Mesa Biotech has experienced tremendous success, culminating in acquisition by Thermo Fisher for up to $550m USD. The Accula microfluidics platform accomplished the leap from the lab to commercial product through clever design and engineering choices. Through information obtained from interviews with key Mesa Biotech leaders and publicly-available documents, we describe the keys to Mesa's success and how they might inform other lab-on-a-chip companies.


Subject(s)
COVID-19 , Pandemics , Biotechnology , COVID-19/diagnosis , Humans , Microfluidics , SARS-CoV-2
8.
IEEE Open J Eng Med Biol ; 2: 142-151, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1596389

ABSTRACT

Faced with the COVID-19 pandemic, the US system for developing and testing technologies was challenged in unparalleled ways. This article describes the multi-institutional, transdisciplinary team of the "RADxSM Tech Test Verification Core" and its role in expediting evaluations of COVID-19 testing devices. Expertise related to aspects of diagnostic testing was coordinated to evaluate testing devices with the goal of significantly expanding the ability to mass screen Americans to preserve lives and facilitate the safe return to work and school. Focal points included: laboratory and clinical device evaluation of the limit of viral detection, sensitivity, and specificity of devices in controlled and community settings; regulatory expertise to provide focused attention to barriers to device approval and distribution; usability testing from the perspective of patients and those using the tests to identify and overcome device limitations, and engineering assessment to evaluate robustness of design including human factors, manufacturability, and scalability.

10.
Sci Rep ; 11(1): 14604, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1315611

ABSTRACT

While there has been significant progress in the development of rapid COVID-19 diagnostics, as the pandemic unfolds, new challenges have emerged, including whether these technologies can reliably detect the more infectious variants of concern and be viably deployed in non-clinical settings as "self-tests". Multidisciplinary evaluation of the Abbott BinaxNOW COVID-19 Ag Card (BinaxNOW, a widely used rapid antigen test, included limit of detection, variant detection, test performance across different age-groups, and usability with self/caregiver-administration. While BinaxNOW detected the highly infectious variants, B.1.1.7 (Alpha) first identified in the UK, B.1.351 (Beta) first identified in South Africa, P.1 (Gamma) first identified in Brazil, B.1.617.2 (Delta) first identified in India and B.1.2, a non-VOC, test sensitivity decreased with decreasing viral loads. Moreover, BinaxNOW sensitivity trended lower when devices were performed by patients/caregivers themselves compared to trained clinical staff, despite universally high usability assessments following self/caregiver-administration among different age groups. Overall, these data indicate that while BinaxNOW accurately detects the new viral variants, as rapid COVID-19 tests enter the home, their already lower sensitivities compared to RT-PCR may decrease even more due to user error.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , Point-of-Care Systems , Self-Testing , Humans , Limit of Detection , SARS-CoV-2 , Sensitivity and Specificity
11.
Am J Hematol ; 96(2): 174-178, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-954382
SELECTION OF CITATIONS
SEARCH DETAIL